Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles.
نویسندگان
چکیده
We have demonstrated the essential nanogap effects on surface-enhanced Raman scattering (SERS) signals obtained from two diagonally aligned gold nanoparticles with several nanometre separations, which were precisely fabricated on a glass substrate. This is the first proof of principle for extracting the light localization effects on SERS due to the formation of nanogaps from experimentally observed SERS signals.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملComparative Characteristics of Gold-Gold and Gold-Silver Nanogaps Probed by Raman Scattering Spectroscopy of 1,4-Phenylenediisocyanide
A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of “hot site” for surface-enhanced Raman scattering (SERS). The characteristics of a typical nanogap formed by a planar Au and either an Au and Ag nanoparticle have been well studied using 4-aminobenzenethiol (4-ABT) as a probe. 4-ABT is, however, an unusual molecule in the sense that its SERS spectral feature is de...
متن کاملThe structure and properties of graphene on gold nanoparticles.
Graphene covered metal nanoparticles constitute a novel type of hybrid material, which provides a unique platform to study plasmonic effects, surface-enhanced Raman scattering (SERS), and metal-graphene interactions at the nanoscale. Such a hybrid material is fabricated by transferring graphene grown by chemical vapor deposition onto closely spaced gold nanoparticles produced on a silica wafer....
متن کاملTunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can b...
متن کاملSelf Assembly of Colloidal Gold Nanoparticles on Diblock Copolymer Thin Film Templates
Self-assembly of metallic nanoparticles were investigated for the development of field-enhanced chemical and biological detection devices with the capacity to achieve single-molecule level detection resulting from surface enhanced Raman scattering, associated with closely spaced noble metal nanostructures. Using chemical selfassembly, we attached monodisperse, colloidal gold nanoparticles on se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 47 12 شماره
صفحات -
تاریخ انتشار 2011